Step of Proof: dec_iff_ex_bvfun
12,41
postcript
pdf
Inference at
*
1
1
I
of proof for Lemma
dec
iff
ex
bvfun
:
1.
T
: Type
2.
E
:
T
T
3.
g
:
x
,
y
:
T
. (
E
(
x
,
y
))
(
(
E
(
x
,
y
)))
x
,
y
:
T
. (
case
g
(
x
,
y
) of inl(
a
) => tt | inr(
b
) => ff)
(
E
(
x
,
y
))
latex
by ((RepD)
CollapseTHENA ((Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 4:n
C
)) (first_tok :t) inil_term)))
latex
C
1
:
C1:
4.
x
:
T
C1:
5.
y
:
T
C1:
(
case
g
(
x
,
y
) of inl(
a
) => tt | inr(
b
) => ff)
(
E
(
x
,
y
))
C
.
Definitions
t
T
,
x
:
A
.
B
(
x
)
origin